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Accumulating evidence suggests that many findings in psychological science and cognitive neuroscience may prove
difficult to reproduce; statistical power in brain imaging studies is low and has not improved recently; software errors
in analysis tools are common and can go undetected for many years; and, a few large-scale studies notwithstanding,
open sharing of data, code, and materials remain the rare exception. At the same time, there is a renewed focus on
reproducibility, transparency, and openness as essential core values in cognitive neuroscience. The emergence and
rapid growth of data archives, meta-analytic tools, software pipelines, and research groups devoted to improved
methodology reflect this new sensibility. We review evidence that the field has begun to embrace new open research
practices and illustrate how these can begin to address problems of reproducibility, statistical power, and transparency
in ways that will ultimately accelerate discovery.
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Introduction

Most cognitive neuroscientists seek answers to ques-
tions about what patterns of neural activity underlie
perception, thinking, memory, and action, among
other topics. In answering these questions, we mar-
shal evidence from studies of human and animal
behavior, nervous system structure and activity, the
effects of endogenous and exogenous substances,
patterns of disorder and disease, and trajectories
of change across the life span. Our common aim
is to reveal reliable, reproducible, and useful facts
about the relationship between mind and brain.
These facts depend crucially on the tools we deploy
to collect and evaluate data and on how we report
what we do or do not find. Here, we review the
degree to which our field meets the scientific ideals
of reproducibility, transparency, and openness.

Rigorous self-reflection and self-criticism about
methodology have been core values in cognitive
neuroscience for some time.1–3 Efforts to foster
widespread data sharing4–6 and other open research
practices have long histories. What strikes us as

new and important enough to merit reviewing
them in 2017 are developments that likely cheer
the pessimist and the optimist alike. On the one
hand, accumulating evidence suggests that many
findings in psychological science may be difficult
to reproduce;7 statistical power in brain imaging
studies is low8–10 and has not improved11 over time;
software errors in analysis tools are common and
can go undetected for many years;12 and, a few large-
scale studies and databases notwithstanding,4,13,14

the open sharing of data, code, and materials are
rare. On the other hand, we see a renewed focus on
reaffirming reproducibility, transparency, and
openness as essential core values in psychological
science and related fields.7,15–19 This reinvigorated
focus has begun to provide greater clarity about
what these values mean in practice.20 We find
that the emergence and rapid growth of data
archives, meta-analytic tools, software pipelines,
and research groups devoted to improved method-
ology are genuine reasons for optimism about the
future of an open, transparent, and reproducible
cognitive neuroscience.

doi: 10.1111/nyas.13325
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In the sections that follow, we discuss definitions
of open science practices and why they might be
important for the field. We then review some of the
history of these practices, discuss a range of recent
developments, and speculate about what the near
future might hold.

History of open science practices
in cognitive neuroscience

What are open science practices? What does it mean
to reproduce or replicate a study? Most researchers
agree that discovering robust and generalizable find-
ings is central to the scientific enterprise,1,2,16,19,21

but what evidence determines success or failure in
meeting the ideal? In a previous paper in Annals
of the New York Academy of Sciences, Bennett and
Miller1 sought to assess the reliability of functional
magnetic resonance imaging (fMRI) results and
provided data about the diverse measures used to
assess reliability in the functional neuroimaging lit-
erature of that time. In summarizing the results
of a large sample of studies reporting measures of
test/retest reliability, Bennett and Miller1 observed
that no agreement exists about what constitutes
acceptable reliability, nor was there consensus on
what measure or measures should be used to evalu-
ate it. Half a decade later, Goodman et al.20 argued
that uncertainty and disagreement about the mean-
ing of these concepts22 persists and that misun-
derstanding impedes progress toward solutions. In
response, Goodman et al. suggest three new terms
that we adopt here: methods reproducibility, results
reproducibility, and inferential reproducibility.
Methods reproducibility means that a different inves-
tigator is able to obtain the same results when apply-
ing the same tools and analytical procedures used in
a study to the same (i.e., original) data set. Results
reproducibility means that a new study with new
data, collected following the original procedures
as closely as possible, yields the same outcomes.
Inferential reproducibility occurs when independent
researchers come to similar conclusions about what
patterns of data mean, based on their own repli-
cation study or a reanalysis of a prior study.20 For
example, Goodman et al.20 suggest that competing
views about the implications of a recent high-profile
study of replicability in psychology7 stem, at least in
part, from a disagreement at this level.23,24

Clearly, to achieve methods reproducibility,
research practices that accurately and precisely

capture essential details about methods, data, and
workflows must be deployed; to achieve results
reproducibility, those elements must be made
openly and freely available to the scientific com-
munity; and achieving inferential reproducibility
requires, among other developments, the capacity
to accumulate, analyze, and interpret large quanti-
ties of data25,26 in consistent ways. Thus, openness
and transparency relate directly to reproducibility of
all three kinds. Reflecting this sensibility, a diverse
array of behavioral scientists have begun arguing
that achieving the scientific ideals of a free and open
exchange of information requires the widespread
adoption of open and transparent communication
practices.15,16,27–30 How well has the field of cogni-
tive neuroscience measured up to these ideals?

Methods reproducibility
Much of cognitive neuroscience research is compu-
tationally intensive, so the extent to which the field’s
methods are reproducible depends on whether
complex computational workflows can be reliably
regenerated. Whether measuring task- or non-task–
related nervous system activity using electroen-
cephalography (EEG) or fMRI or brain structure
using MRI, computed tomography, or positron
emission tomography, cognitive neuroscience stud-
ies regularly generate spatially and temporally dense
data streams. Seemingly minor choices made at each
step of an analysis pipeline—including experimen-
tal design, data acquisition, preprocessing, analy-
sis, and reporting—can ramify and have important
implications for reproducibility.

The complexity of the typical neuroimaging
pipeline is visible from the earliest stages of data
acquisition. While there are only three major man-
ufacturers of MRI scanners, the machines run dif-
ferent pulse sequences, and even scanners from the
same manufacturers do not often run the same soft-
ware. At the preprocessing stage—even before statis-
tical analysis—researchers face a bewildering array
of options when considering when and how (or
even whether) to account for subject movement,
signal spikes, differences in brain anatomy, phys-
iological confounds, and any number of standard
concerns. Statistical analysis is no less complicated,
as researchers must decide what kind of analyses
to conduct (mass univariate, multivariate pattern
classification, etc.), what search space to use (whole
brain, specific regions of interest), what statistical
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contrasts and multiple comparisons correction pro-
cedures to apply, and so on. The sheer magnitude
of variation in analytical approaches underscores
why computational reproducibility is so critical in
cognitive neuroscience and why it has historically
seemed so daunting. Put simply, without the ability
to understand precisely what steps a research group
took, it is doubtful that anyone else could ever repro-
duce the procedures.

In EEG, the diversity of methods is arguably even
larger than in fMRI, with numerous manufactur-
ers and a corresponding variety of technologies
using different kinds of electrodes, amplifier set-
tings, cap configurations, and software packages.31

There have been some efforts at standardization of
analysis methods through the release of software
packages, such as the Matlab-based EEGLAB32 and
ERPLAB.33 These packages have the advantage of
allowing researchers to explore the data using a
graphical interface while simultaneously generat-
ing an executable history script that records most
of the analysis decisions. The BigEEG Consortium
(www.bigeeg.org), an offshoot of the EEGLAB ini-
tiative, seeks to develop and promote data and meta-
data standards for EEG-based research that may
eventually facilitate large-scale analysis and meta-
analysis. But, by and large, EEG data collection and
analysis involves equipment and workflows that vary
considerably from laboratory to laboratory.

Of course, the complexity of neuroimaging data
analysis is not itself the enemy. It is not the raw num-
ber of methodological and analytical choices per se
that creates barriers to reproducibility; rather, the
challenge lies in encoding those degrees of freedom
in a standardized (and ideally, machine-readable)
way. Fortunately, over time, the brain imaging com-
munity has converged on recommendations about
what parameters should be reported and how.34,35

Moreover, at least in fMRI, imaging data analysis
software shows a significant degree of standardiza-
tion. From the earliest days of human brain imaging,
leading research groups in the United States and
the United Kingdom wrote and freely distributed
analysis software. This led to the widespread adop-
tion of common tools with similar, although not
identical, algorithms. Concerns about the inferen-
tial consequences of using one tool over another
have been largely alleviated by findings from Gold36

and Morgan,37 and questions about the reliability
of workflows using one or more tools have been

addressed by Strother et al.38,39 and others (but see
Refs. 2,12, and 40). All of the major tools in com-
mon use—SPM, FSL, AFNI, and BrainVoyager—
enable researchers to write scriptable workflows,
built on internal engines (BrainVoyager), widely
available commercial software (SPM-MATLAB), or
free/open source software languages (Linux/unix
shell, python, C/C++ for FSL and AFNI).

Naturally, there are some important caveats to
this seemingly rosy picture. One concern is that,
while existing software supports relatively standard-
ized and highly processing workflows in principle,
whether researchers actually take advantage of those
features in practice is a separate matter. The number
of SPM, AFNI, and BrainVoyager users who com-
monly rely exclusively on automated scripting in
their analysis workflows, as opposed to using more
user-friendly but inherently irreproducible graph-
ical interfaces, is not known. We speculate that it is
small. Moreover, even in laboratories that conduct
fully automated analyses, the sharing or publication
of the corresponding scripts or data processing
pipelines remains rare.40 While the differences
between pipelines can be subtle,40 the margin for
error is also small (many published results only
barely survive statistical correction), so a lack of
full reporting can severely impair reproducibility.

A second caveat is that perfect reproducibility
may be impossible to achieve even when a researcher
is armed with all of the original data and scripts
used to generate an analysis. Operating system dif-
ferences, untracked differences in implicit software
dependencies, and other factors can sometimes pro-
duce numerical discrepancies that, while initially
small, may magnify as they cascade through a work-
flow to the point of introducing qualitative differ-
ences in results.41 We discuss potential solutions
to this problem (e.g., containerization) later; for
present purposes, we note that acknowledging the
intrinsic limits of methodological reproducibility
does not grant researchers license to ignore best
practices in automation and code sharing.

Importantly, brain imaging data are only part
of the reproducibility story in cognitive neuro-
science. It is also critical to understand how to
reproduce the psychological components of cogni-
tive neuroscience studies—most notably, the exper-
imental design and its intended relationship to the
latent constructs of interest. Here, the prospects
for full reproducibility have historically seemed
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less promising. Most experimental tasks involve
the presentation of sequences of visual or auditory
events and the collection of participants’ behav-
ioral responses—button presses, mouse movements
or clicks, vocalizations, or eye movements—using
computer programs that instantiate tasks custom
tailored by a research team to address particular
questions of interest. There have been researcher-
initiated efforts to develop controlled vocabularies
that describe the range of cognitive tasks deployed
in the literature.42,43 The National Institutes of
Health (NIH) has spearheaded the creation of a
standard toolbox of easily deployable tasks44 and
the development of data repositories designed to
capture metadata about behavioral tasks and their
variants45 in standardized and searchable forms.
However, such efforts notwithstanding, most cog-
nitive neuroscience researchers employ customized
tasks built using a variety of software and scripting
environments (e.g., E-Prime, the Matlab-based psy-
chophysics toolbox, PsychoPy, and DMDX). Tasks
use customized image and sound components, and
researchers rarely share the code, image, or sound
files used in experimental tasks.40 These practices
limit the reproducibility of behavioral measures
used in cognitive neuroscience and psychology as a
whole.7 Of course, the rigid standardization of tasks
and materials has its own significant flaws, includ-
ing the possibility of stifling innovation and slow-
ing progress. We suggest that more widespread and
open sharing of behavioral tasks, code, and materi-
als provides a constructive middle ground.

Results reproducibility
Assuming that independent researchers are able to
reproduce the methods of each other’s studies, how
closely do the findings generated converge? The
answer is: It depends. In principle, even differences
as basic as the brand of MRI scanner could under-
mine the ability to compare results across studies,46

so considerable effort has gone into standardizing
techniques that allow multisite imaging studies to
be carried out in rigorous and reproducible ways.
Fortunately, the viability of the basic technology
is no longer in any serious doubt; abundant evi-
dence demonstrates that all major brain imaging
techniques are at least capable of producing highly
convergent results across different sites and exper-
imental procedures. Perhaps the best-known effort
to demonstrate the basic robustness of results—

not only in neuroimaging, but in other biomedi-
cal fields—is the Biomedical Informatics Research
Network (BIRN; https://www.nitrc.org/projects/
birn/). BIRN is a multisite, collaborative research
consortium that strives to advance understanding
of brain research and brain disease through the
principles of data sharing and collaboration. There
were several different BIRN initiatives, including
the morphology BIRN, the mouse BIRN, and the
function BIRN (fBIRN), among others. Although
the fBIRN’s disease focus was schizophrenia, con-
siderable effort went into developing generalizable
models for multisite data collection, best prac-
tices for research, and methods to facilitate the
use of standardized processes across sites. One of
fBIRN’s biggest contributions was software that
enabled the systematic investigation of how fMRI
activation signals vary across sites, field strengths,
and scanner platforms. The project also developed
methods to control for these differences.47 Scien-
tists from fBIRN developed an automated qual-
ity assurance procedure based on a standard MRI
phantom, and the team released freely available
software that could be easily incorporated into
any service center’s data-transfer pipeline.48 The
fBIRN also provided leadership in modeling inter-
site reliability.49 The same 18 participants were
scanned at four different scanning sites. These analy-
ses revealed that intersubject variability was 10 times
greater than intersite variability; activation in many
brain regions showed fair to good reliability; and
measures of reliability increased with more runs
of data.

More generally, the ability of techniques, such
as fMRI, to produce robust and replicable find-
ings is demonstrated by the rapid canonization
of many initially surprising neuroimaging find-
ings. For example, the tendency of a spatially con-
served frontoparietal “task-positive” brain network
to increase activity when participants engage in
effortful cognitive activity has been replicated so
often with fMRI over the past two decades50–52 that
the result is now often treated as a de facto manip-
ulation check in new experiments. Large-scale
meta-analyses of hundreds or even thousands of
neuroimaging studies at a time further demonstrate
a marked degree of convergence on stable neural
correlates for most major psychological processes,
from pain perception to episodic memory to lan-
guage production.26,53,54
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Of course, it is one thing to establish that neu-
roimaging methods can consistently reveal broad
mappings between cognitive processes and dis-
tributed brain networks, and quite another to estab-
lish that the specific pattern of findings generated
by any single study can be reproduced with a high
degree of fidelity in another study. Unfortunately,
as previous commentators have observed,1,55 it is
unclear whether neuroimaging findings meet this
criterion. Arguably, the central problem is not that
results reproducibility is particularly low, but that
it has been difficult to quantify, leaving open the
question of how much faith one should have in the
results of any given published study. We focus on two
critical barriers to the comprehensive assessment
of results reproducibility in cognitive neuroscience,
emphasizing fMRI (though the same concerns apply
to other commonly used methods, such as EEG,
MEG, and transcranial magnetic stimulation).

A first major challenge is that careful comparison
of results across independent sites and studies typ-
ically requires that the full results be openly shared
between sites, yet initiatives promoting neuroimag-
ing data sharing have historically met with limited
success. An early pioneer in data sharing was the
fMRI Data Center (fMRIDC) at Dartmouth College,
founded in 1999.6,56,57 Around the same time, sev-
eral journals, most notably the Journal of Cognitive
Neuroscience (JOCN), tried to implement manda-
tory open data sharing—including deposition of
raw data files (e.g., blood oxygen level–dependent
(BOLD) time series, anatomical images)—as a
requirement for publication. These efforts to fos-
ter increased transparency, while laudable, sparked
controversy and backlash from the community.
Opponents raised concerns about practical issues—
technology, data formats, time and money con-
straints, and privacy—and cultural ones—the pos-
sibly negative impact of open sharing on individual
scientific careers and advancement, questions about
data ownership, and whether data sharing should be
mandatory or optional.57,58 The backlash eventually
led JOCN to backstep on the data sharing require-
ment, and when funding to maintain the archive
ran out, the fMRIDC stopped accepting new data.
The fMRIDC’s architects argue that, despite the
setbacks, the fMRIDC should be viewed as a suc-
cessful pioneer in open fMRI data sharing56 whose
experiences shaped the next generation of reposito-
ries, like the 1000 Functional Connectomes Project

(FCP; fcon_1000.projects.nitrc.org/) and its Inter-
national Neuroimaging Data Initiative (INDI),58 the
OpenfMRI project (openfmri.org) and NeuroVault
(neurovault.org), the Human Connectome Project
(humanconnectomeproject.org), and the National
Institute of Mental Health–based National Database
for Autism Research (ndar.nih.gov). More broadly,
fMRIDC helped fuel interest in, recognition of,
and support for the essential role that information
infrastructure (neuroinformatics) plays in making
widespread data sharing and reuse possible.

A second barrier to the evaluation of results
reproducibility is a lack of consensus about what
quantitative measures should be used.1 One area
of contention is whether the magnitude or spatial
extent of task-related activation (or both) should be
assessed. Measures of magnitude and spatial extent
depend on criteria for determining which voxels
are active, of course. Bennett and Miller1 argued
that the plurality of measures of reliability reported
within individual studies made it challenging to ask
about the reliability of findings across studies. They
reported that the reliability of group-level results,
using individual participants tested at different
times, varied depending on the temporal gap
between the tests, the specific tasks employed (sen-
sory/motor versus cognitive), design factors (block
versus event-related), the magnitude of activations,
and other interindividual factors. Importantly,
Miller et al.59 and Costafreda et al.60 found that, like
the difference between within- and between-site
variability found by the fBIRN team,49 variability
within participants across testing sessions was lower
than variability between participants. Differences
in tasks, the degree of selectivity of active voxels to
those tasks, and subject motion appeared to be the
biggest contributors to intersubject variability.61

Nevertheless, Bennett and Miller1 noted that all
of the studies reporting test/retest reliabilities had
small sample sizes, foreshadowing concerns about
limited statistical power that others raised in the
intervening years.8,11

In sum, we believe that, perhaps surprisingly
given the size of the primary literature, the jury is
still out on the degree to which researchers should
expect individual neuroimaging findings to repli-
cate when repeated under similar conditions. There
is little doubt that methods like fMRI can produce
highly replicable results, and that many canoni-
cal findings are indeed highly robust; however, as
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the low-hanging fruit are plucked and researchers
increasingly turn to subtler phenomena, it becomes
more important for researchers to share data and
results openly. Only in doing so can we progress
toward consensus on criteria for evaluating the
reproducibility of results.

Inferential reproducibility
The challenge of generating reproducible infer-
ences—where independent researchers come to
similar conclusions about what patterns of data
mean—has been a central concern in the field
for many years. Numerous published reviews have
highlighted conceptual and statistical problems that
threaten common neuroimaging inferences.25,62,63

One source of concern is that the statistical power
of most fMRI studies is well below convention-
ally adequate levels;8–11 in a recent review based on
over 1100 samples, Poldrack et al.62 found that the
median fMRI study in 2015 was underpowered to
detect anything but relatively large effects (Cohen’s d
of � 0.75) even when using relatively high-powered
procedures (i.e., a one-sample t-test). This obser-
vation is worrisome not only because low power
implies a high false-negative rate and inefficient
resource expenditure, but because it frequently leads
to incorrect interpretations—the notion that effects
are stronger and better localized than they actually
are.64,65 This increases the false-positive rate8 across
the literature as a whole.

A second set of concerns arises at the analysis
stage. As the Bennett et al.66 well-known “dead
salmon” illustration showed, insufficiently stringent
multiple corrections procedures can easily inflate
the false-positive rate—an observation echoed by
numerous studies that have highlighted limitations
with common correction methods.12,67–69 More-
over, such analyses all assume a best-case scenario
under which researchers are not (inadvertently) cap-
italizing on the many “researcher degrees of free-
dom” available in a typical fMRI pipeline.40 If one
could formally account for P-hacking (i.e., data-
dependent selection of analysis procedures), it is
likely that the false-positive rate would rise, perhaps
substantially.11,70

Last, even if one sets aside the statistical issues
involved in the generation of cognitive neuroscience
findings and assumes for the sake of argument that
most published findings are fundamentally sound,
it does not follow that researchers will agree about

how to interpret such findings. Indeed, trenchant
concerns have been raised about some of the most
common assumptions researchers make when inter-
preting neuroimaging results, ranging from basic
questions about what the BOLD signal reflects
to what kind of information is actually extracted
from multivariate pattern analysis.71–74 Poldrack75

flagged the problem of reverse inference as a partic-
ularly serious challenge, noting that the widespread
approach of inferring mental function on the basis
of the pattern of observed brain activity results runs
a high risk of failure—unless it is supported by an
appropriate Bayesian analysis that directly estimates
the probability of a given task or state occurring
conditional on an observed pattern of activity that
is based on a reasonable prior distribution.26

Of course, science is a difficult enterprise, and
it is easy to find serious methodological or statis-
tical problems with virtually any piece of scien-
tific research. The key question is what steps are
researchers taking to address inferential concerns
and to ensure that research findings continue to
improve in reliability over time. To this end, we
consider more recent initiatives aimed at improv-
ing the reproducibility of cognitive neuroscience
research.

Recent initiatives

The focus on problems of reproducibility in sci-
entific research as a whole has accelerated in the
last several years,16,19,20 and its scope extends well
beyond psychological and neural science. As a result,
cognitive neuroscience is both a beneficiary of new
tools that promise to improve reproducibility and a
contributor to them. We show that, fortunately, our
field has already begun to embrace new, open, and
transparent research practices that promise to miti-
gate or even eliminate many of the serious problems
of methods, results, and inferential reproducibility.

Methods reproducibility
Concern about reproducible workflows and prac-
tices across the computational sciences has sharp-
ened in similar ways.76,77 While the specific practices
that make computations reproducible vary from one
field to another, Sandve et al.78 summarized a set
of steps that have broad applicability to cognitive
neuroscientists. These include avoiding manual data
manipulation steps (using scripts, not graphical user
interfaces); keeping careful track of the provenance
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(history) of all data, including derived results; track-
ing versions of all software and data; and providing
public access to all code, outputs, and data.

Several data analysis tools have been devel-
oped based on free open-source languages, like
R (RStudio; rstudio.com) and Python (Jupyter;
jupyter.org). These tools support the creation of
interactive electronic notebooks that combine data
manipulation and analysis code along with graphic
visualizations and text-based commentary. The
tools can be used with version-control environ-
ments like git or mercurial, allowing the his-
tory of a project’s data analysis to be captured.
Version-control software can be used to store and
share software, analyses, manuscripts, and doc-
uments written in virtually any language (both
human and computer). Coupled with web-based
repositories like GitHub (github.com), BitBucket
(neurovault.org), or the Open Science Frame-
work (OSF; osf.io), version-control systems enable
researchers to share the histories and current
status of all project materials and data. Some
researchers concerned about computational repro-
ducibility have gone even further, creating full
software environments that can run a particu-
lar analysis and packaging them in a special-
ized “containerized” environment (e.g., Docker;
www.docker.com) that can be distributed for others’
use across a wide range of computer platforms. The
use of electronic notebooks, version-control soft-
ware, and web-based open data repositories has
begun to enable cognitive neuroscience researchers
to produce open and transparent workflows that
can be readily reproduced. The authors use many of
these techniques in their own research workflows.

Other efforts focus on methods reproducibil-
ity across study teams. One such initiative is the
development of the Brain Imaging Data Structure
(BIDS; bids.neuroimaging.io), a new open data for-
mat designed to facilitate the storage and sharing
of data from brain imaging studies.79 The BIDS
attempts to achieve an easily implementable file
directory and data structure that captures critical
data and metadata about brain imaging studies and
some data about the behavioral tasks performed
by participants. The BIDS arose out of the work
involved in creating the OpenFMRI (openfmri.org)
data repository,34 designed to allow researchers to
openly share raw BOLD imaging data sets with suf-
ficient information to permit re- or meta-analysis.

The BigEEG project mentioned earlier represents a
similar data format standardization initiative tar-
geted at the EEG community.

On the data sharing side, modern platforms have
picked up where pioneers like the fMRIDC left off,
making it ever easier for researchers to distribute
large neuroimaging data sets in a readily usable
form. A major initiative focused on methods and
results reproducibility is the Stanford Center for
Reproducible Neuroscience (CRN; reproducibility.
stanford.edu) formed in 2015 by Russell Pol-
drack and colleagues. The CRN is developing
data repositories for both raw neuroimaging data
sets (an upcoming successor to the OpenFMRI
platform) and whole-brain statistical maps (Neu-
roVault.org).80 A long-term goal of the CRN is not
only to facilitate sharing, but also to provide con-
tainerized, modular, and fully reproducible cloud-
based tools that can be easily executed via a graphical
web interface. This will bring reproducible state-of-
the-art neuroimaging data analysis within reach of
researchers who lack the resources to deploy their
own pipelines locally.81

One of us82 has argued that many problems
in reproducing the methods of behavioral studies
could be ameliorated if video of all experimental
procedures was more widely recorded and shared
with researchers. Text-based methods sections with
restrictive page or word limits simply cannot con-
vey sufficiently detailed information about a study’s
methods so that it can be reproduced by another
researcher. Sharing video can pose privacy risks,
but the Databrary (databrary.org) digital library, a
repository specialized for storing and sharing video,
has developed a policy framework to share identifi-
able data with participant permission. Like the OSF,
the Databrary has begun to serve as a web-based
home for researchers to store and share data, meta-
data, and materials about the nonimaging-related
portions of a study, including videos of experimental
procedures, images, audio recordings, or displays.
The Databrary largely focuses on developmental and
learning science research now, but may expand in
the future.

In sum, the field is making rapid strides to
improve the reproducibility of methods, with
the emergence of new tools, practices, centers,
web-based data management systems, and data
repositories.
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Results reproducibility
Despite the acknowledged lack of consensus about
how to measure and thereby evaluate results
reproducibility1 and the noted significant problems
with statistical power, we find a number of encour-
aging developments concerning the reproducibility
of results. Researchers continue to take seriously
the effort to systematically measure the factors that
influence test/retest reliability of responses across
time and tasks, and these sorts of studies are increas-
ingly common.83–88 Other research programs focus
on addressing questions about the long-term
within-subject stability of responses89,90 and how
the accurate assessment of within-participant dif-
ferences might address questions about individual
differences.91–93 There is increasing support for
conducting and publishing the results of confirma-
tory studies,94,95 thereby rectifying some existing
biases that often favor the publication of new, novel
results over confirmatory ones.

Several large-scale cross-site imaging studies
whose results were designed to be widely shared
with the research community have been undertaken
(e.g., the Human Connectome Project and the U.K.
Biobank Project). Findings from these studies are
beginning to appear,95 with results that both con-
firm and extend current understanding. Perhaps
equally important is the extent to which planning for
the large-scale sharing of these sorts of data has led
to publication of extensive details about processing
pipelines96 and careful planning about how to make
shared components useful to other researchers.

Policy makers and publishers have taken a
renewed interest in how the context in which sci-
entific research is conducted and results are shared
can influence reproducibility. The Consortium for
Reliability and Reproducibility has developed best-
practice guidelines for the use of resting-state fMRI
data available through the INDI archive,96 and the
Organization for Human Brain Mapping has cre-
ated a Committee on Best Practice in Data Analy-
sis and Sharing.97 Following on the success of the
ArXiv preprint service, increasing numbers of cog-
nitive neuroscientists have begun to deposit article
preprints in the BioRxiv preprint service (biorxiv.
org/neuroscience). An effort specific to psycholog-
ical science (PsyArxiv; osf.io/view/psyarxiv/) has
begun with support from the Center for Open
Science (cos.io) and the newly formed Society
for the Improvement of Psychological Science

(improvingpsych.org). High-profile generalist and
topic-specific journals are adopting data sharing
requirements reminiscent of those JOCN attempted
to implement 15 years ago; there are new journals,
such as Nature Publishing’s Scientific Data, focused
on creating citable, scholarly homes for well-curated
data sets; and some journals (e.g., Cortex) have
adopted a new publication format, the preregistered
report, that conducts a review of the methods and
analysis plan before data collection in exchange for
a commitment to publish the results regardless of
the findings.

There have also been recent developments to
improve appropriate usage and reporting of sta-
tistical tests by means of automated tools, such as
statcheck (statcheck.io),98,99 which looks for elemen-
tary errors in the reporting of individual statistical
tests. A related tool, P-curve (www.p-curve.com),100

uses the complete set of statistical results from a body
of work to estimate the evidentiary strength in favor
of a hypothesis. While largely focused on the psy-
chological science literature, these initiatives war-
rant close attention from cognitive neuroscientists,
as they illustrate how the standardization of report-
ing practices can lead to insights about the quality
of research practices and the strength or weakness
of evidence across a broad published literature.100

In the case of statcheck, the system depends on
the fact that most experimental psychology papers
report statistical analyses in ways that allow perti-
nent parameters to be automatically extracted from
the published texts. Clearly, the diversity of efforts
focused on bolstering the reproducibility of cogni-
tive neuroscience results has considerable forward
momentum.

Inferential reproducibility
Since the 2010 Bennett and Miller review on replica-
bility, new tools and practices that promise to bolster
the reproducibility of inferences have been created
and are being adopted at an accelerating rate. We
highlight three: meta-analysis, improved statistical
practices, and machine learning.

For meta-analysis to succeed, the statistical effects
from a large number of disparate studies must be
collected, normalized, and reported in standard-
ized ways.101 The variability in analysis and report-
ing practices across the cognitive neuroscience
literature can make meta-analysis challenging. As a
result, the creation and curation of large-scale brain
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imaging databases have been essential for the growth
of meta-analysis as an inferential tool. One of the
oldest such systems devoted to supporting meta-
analytic data sets and software is the BrainMap
project (www.brainmap.org) project.5 As of late fall
2016, BrainMap consisted of data from more than
100,000 individual participants from nearly 4000
papers. The BrainMap data and meta-analysis tools
have been used and cited more than 600 times since
1992, with more than 125 citations in 2016 alone.

Neurosynth (neurosynth.org)26 takes an alter-
native approach to meta-analysis in which the raw
data are (1) activation (x,y,z) coordinates mined
from the text of imaging papers published in HTML
on the web, combined with (2) word frequencies
from the same papers. In this way, Neurosynth aims
to automate and thereby standardize and accelerate
the process of meta-analysis. By combining infor-
mation about activation coordinates with term
frequencies derived from calculating distributional
statistics from the published articles, Neurosynth
enables the analyst to interactively determine the
extent of evidence for a relationship between a spe-
cific term of interest and a set of brain coordinates.
For example, the analyst could visualize either
the probability of a given voxel’s activation given the
existence of a specific term in the system’s database
of papers or the probability of a target term appear-
ing in papers that report a particular voxel as active.
The system allows users to view 3D maps of the
conditional probabilities online, to download the
maps for further analysis, and to create customized
sets of searches. As of early 2017, Neurosynth con-
tained data from more than 11,000 imaging studies,
and it provides users with downloadable interactive
meta-analyses from more than 3000 terms. The
system has been cited almost 600 times, with
more than 180 citations in 2016 alone. Of course,
Neurosynth only supports meta-analysis on a subset
of the published literature—older papers that were
not published in easily parsable HTML formats and
unpublished findings fall outside its scope.

Beyond meta-analysis, cognitive neuroscience
research continues to push for new statistical pro-
cedures and the wider adoption of long-standing
but more robust ones. For space reasons, we do
not elaborate extensively here, but among the
issues under active discussion are the appropriate
handling of main effects and interaction tests,102

the applicability of linear mixed-effects modeling

techniques,103 and the ongoing need to guard
against the risks of false-positive results3,104 even
when using well-established, vetted, and widely used
analysis software.12 Still others suggest that the stan-
dard practice of treating stimulus effects as fixed
and not random may undermine the generaliz-
ability of findings across studies.105 An emergent
theme is the ongoing need for vigorous and rig-
orous methodological reevaluation combined with
a commitment to more open software publication
practices. In the recent case of Eklund et al.,12 the
discovery of an error in the algorithm for controlling
for cluster-wise fMRI activation effects quickly led
to changes in the widely-used AFNI package.106,107

The episode highlights the corrective, collaborative
nature of open-source software development while
also underscoring the uncomfortable reality that, at
present, very few people who use open-source soft-
ware packages actually bother to read the underlying
code (the AFNI bug had previously gone undetected
for many years).

In many other areas of social and computational
science, progress has been facilitated by borrowing
ideas and techniques from the field of machine learn-
ing. Philosophically, machine learning researchers
tend to emphasize their ability to quantitatively
predict key outcomes and pay less attention to
traditional forms of scientific explanation.108 This
philosophy has led to the rapid proliferation of thou-
sands of predictive modeling techniques—a num-
ber of which (e.g., support vector machines) are
deployed regularly in cognitive neuroscience. Many
fMRI studies are now framed as predictive problems
in classification or regression, where the goal is to
build a model that successfully discovers a mapping
between a set of predictor variables and a set of dis-
crete (in the case of classification) or continuous (in
the case of regression) outcomes. For example, the
distributed activation pattern of a large number of
voxels in an fMRI data set can be used to predict suc-
cessful versus unsuccessful attempts to recognize a
stimulus. The resultant classifier can then be used to
predict outcomes “out-of-sample” (i.e., in new data
sets) and potentially also to aid in the interpretation
of which voxels were likely to have played a role in
processing relevant information. This gives rise to
applications such as the “mind-reading” of repre-
sentations present in the visual cortex during movie
viewing109,110 or revealing participants’ semantic
maps activated during narrative comprehension.111
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Machine learning and related Big Data techniques
have provided entirely new approaches to analy-
sis. They allow researchers to capitalize on neu-
ral information patterns that may be too subtle or
complex to be easily discovered using more con-
ventional summary statistic approaches (e.g., brain
activation maps or event-related potentials).112 Of
course, prediction-oriented approaches are not a
panacea for standard concerns about the seeming
ease with which researchers can fool themselves
and unwittingly generate false or exaggerated find-
ings. In the context of machine learning, the term
overfitting is used to describe a case in which the
predictions of an analysis have been inadvertently
contaminated by noise in the data that were used
to develop the analysis. As a consequence of overfit-
ting, favorable results obtained when analyzing the
same data set that was used to develop and calibrate
the analysis will not be obtained when examining
other, equivalent data sets. Some researchers who
use machine learning take the notion of overfitting
more seriously than others.113 The cautious deploy
methods, such as cross-validation (i.e., training and
testing a model on independent subsets of the data),
should in principle guard against overfitting. How-
ever, machine learning pipelines allow for consid-
erably more analytical flexibility than conventional
analyses. Researchers often have a choice among lit-
erally hundreds of different estimation approaches,
each of which may have its own free parameters
that require tuning to perform optimally. Whereas
there is widespread awareness of the need to cross-
validate results once a model has been selected, there
is much less recognition that overfitting can still
occur through the optimization of an analysis (for
further discussion, see Refs. 114 and 115). Thus, as
our field increasingly adopts machine learning tech-
niques, it will be important to borrow established
best practices from fields that have been using sim-
ilar approaches for longer periods of time.112,115

The future

As Van Horn and Gazzaniga56 observed, “the real-
ity remains that very little of the neuroimaging data
gathered each day in the field have been made avail-
able to those who could help provide much needed
understanding.” While we agree that this assess-
ment still holds, we see other evidence that points
toward a very different future. There is increasing
recognition that greater openness and transparency,

reflected in data, materials, and code sharing, offers
individual investigators and the field as a whole
far more benefits than risks.28,58,108,116 While sig-
nificant challenges remain in developing technol-
ogy and workflow practices that make open and
transparent workflows easy to generate and data
readily shareable, that progress is being made. It
is increasingly clear that there are substantial sci-
entific rewards in analyzing or reanalyzing large-
scale shared data sets beyond improving statistical
power. Accordingly, while we take seriously the con-
cerns many have raised recently about the methods,
results, and inferential reproducibility of our field,
we encourage our colleagues to embrace the newly
emerging open science practices with an optimistic
mindset,56,117 as there is so much more to gain than
to lose.

At the same time, it is essential that the field
identify barriers that stand in the way of a more
open, transparent, and reproducible neuroscience
of cognition. One clear gap is the difficulty of
capturing and reporting reproducible information
about tasks, displays, and analysis procedures,
although new data and materials repositories like
the OSF and the Databrary, emerging data standards
(BIDS; BigEEG), and pipelines (EEGLAB; nipype)
can play constructive roles. Another concerns the
need to forge community consensus around a set
of principles about the culture in which cognitive
neuroscience research is carried out—how to seek
permission to share, when data and materials
should be shared, how to measure and report indi-
vidual scholarly contributions to large-scale studies,
how to weigh the impact of analyses conducted
on secondary data relative to the collection of new
data, and how to ensure that the transition to
more open science practices does not unduly harm
the careers of the next generation of researchers.
Providing answers to these questions goes beyond
our scope, but we urge continued dialogue focused
on achieving community consensus.

A vital question for which there remains no
satisfying answer is what entity will pay for the cura-
tion, support, maintenance, and long-term stor-
age of cognitive neuroscience data and materials.
Data repositories, both past and present, have been
funded either by short-term (3- to 5-year duration)
NIH or National Science Foundation (NSF) research
grants or private foundation funders. Thus, despite
increasingly strong encouragements from granting
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agencies to share data and materials or even man-
dates to do so, there is as yet no long-term com-
mitment from the agencies for funding devoted to
long-term data preservation. Data curation, storage,
and preservation are not inexpensive, and the prob-
lem of how to sustain research infrastructure that
benefits the entire research community will neither
solve itself nor go away. Nevertheless, on the basis
of the success of other fields like astronomy, high-
energy physics, and the geosciences, we think that
a strong case can be made for enduring federal and
private donor support for research infrastructure
that empowers cognitive neuroscientists to openly
share data, materials, and methods.

Fundamentally, we think that investments in the
future of cognitive neuroscience infrastructure will
generate big payoffs. Fostering the widespread adop-
tion of open, transparent, and reproducible research
practices coupled with innovations in technology
that enable the large-scale analysis of our partic-
ular store of Big Data will accelerate the discov-
ery of generalizable, robust, and meaningful find-
ings about the nature and origins118 of human
cognition.
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