Generalized Correspondence-LDA Models (GC-LDA) for Identifying Functional Regions in the Brain

Timothy N. Rubin
Indiana University
timrubin@indiana.edu

Oluwasanmi Koyejo
University of Illinois at Urbana-Champaign
sanmi@illinois.edu

Michael N. Jones
Indiana University
jonesmn@indiana.edu

Tal Yarkoni
University of Texas at Austin
tyarkoni@utexas.edu

Abstract

This paper presents Generalized Correspondence-LDA (GC-LDA), a generalization of the Correspondence-LDA model that allows for variable spatial representations to be associated with topics, and increased flexibility in terms of the strength of the correspondence between data types induced by the model. We present three variants of GC-LDA, each of which associates topics with a different spatial representation, and apply them to a corpus of neuroimaging data. In the context of this dataset, each topic corresponds to a functional brain region, where the region’s spatial extent is captured by a probability distribution over neural activity, and the region’s cognitive function is captured by a probability distribution over linguistic terms. We illustrate the qualitative improvements offered by GC-LDA in terms of the types of topics extracted with alternative spatial representations, as well as the model’s ability to incorporate a-priori knowledge from the neuroimaging literature. We furthermore demonstrate that the novel features of GC-LDA improve predictions for missing data.

1 Introduction

A primary goal of cognitive neuroscience is to find a mapping from neural activity onto cognitive processes—that is, to identify functional networks in the brain and the role they play in supporting macroscopic functions. A major milestone towards this goal would be the creation of a “functional-anatomical atlas” of human cognition, where, for each putative cognitive function, one could identify the regions and brain networks within the region that support the function.

Efforts to create such functional brain atlases are increasingly common in recent years. Most studies have proceeded by applying dimensionality reduction or source decomposition methods such as Independent Component Analysis (ICA) and clustering analysis to large fMRI datasets such as the Human Connectome Project or the meta-analytic BrainMap database. While such work has provided valuable insights, these approaches also have significant drawbacks. In particular, they typically do not jointly estimate regions along with their mapping onto cognitive processes. Instead, they first extract a set of neural regions (e.g., via ICA performed on resting-state data), and then in a separate stage—if at all—estimate a mapping onto cognitive functions. Such approaches do not allow information regarding cognitive function to constrain the spatial characterization of the regions. Moreover, many data-driven parcellation approaches involve a hard assignment of each brain voxel to a single parcel or cluster, an assumption that violates the many-to-many nature of functional brain networks. Ideally, a functional-anatomical atlas of human cognition should allow the spatial...
and functional correlates of each atom or unit to be jointly characterized, where the function of each region constrains its spatial boundaries, and vice-versa.

In the current work, we propose Generalized Correspondence LDA (GC-LDA) – a novel generalization of the Correspondence-LDA model [3] for modeling multiple data types, where one data type describes the other. While the proposed approach is general and can be applied to a variety of data, our work is motivated by its application to neuroimaging meta-analysis. To that end, we consider several GC-LDA models that we apply to the Neurosynth [12] corpus, consisting of text and neural activation data from a large body of neuroimaging publications. In this context, the models extract a set of neural “topics”, where each topic corresponds to a functional brain region. For each topic, the model provides a description of its spatial extent (captured via probability distributions over neural activation) and cognitive function (captured via probability distributions over linguistic terms). These models provide a novel approach for jointly identifying the spatial location and cognitive mapping of functional brain regions, that is consistent with the many-to-many nature of functional brain networks. Furthermore, to the best of our knowledge, one of the GC-LDA variants provides the first automated measure of the lateralization of cognitive functions, based on large-scale imaging data.

The GC-LDA and Correspondence-LDA models are extensions of Latent Dirichlet Allocation (LDA) [3]. Several Bayesian methods with similarities (or equivalences) to LDA have been applied to different types of neuroimaging data. Poldrack et al. (2012) used standard LDA to derive topics from the text of the Neurosynth database and then projected the topics onto activation space based on document-topic loadings [7]. Yeo et al. (2014) used a variant of the Author-Topic model to model the BrainMap Database [13]. Manning et al. (2014) described a Bayesian method “Topographic Factor Analysis” to identify brain regions based on the raw fMRI images (but not text) extracted from a set of controlled experiments, which can later be mapped on functional categories [5].

Relative to the Correspondence-LDA model, the GC-LDA model incorporates: (i) the ability to associate different types of spatial distributions with each topic, (ii) flexibility in how strictly the model enforces a correspondence between the textual and spatial data within each document, and (iii) the ability to incorporate a-priori spatial structure, e.g., encouraging relatively homologous functional regions located in each brain hemisphere. As we show, these aspects of GC-LDA have a significant effect on the quality of the estimated topics, as well as on the models’ ability to predict missing data.

2 Models

In this paper we propose a set of unsupervised generative models based on the Correspondence-LDA model [2] that we use to jointly model text and brain activations from the Neurosynth meta-analytic database [12]. Each of these models, as well as Correspondence-LDA, can be viewed as special cases of a broader model that we will refer to as Generalized Correspondence-LDA (GC-LDA). In the section below, we describe the GC-LDA model and its relationship to Correspondence-LDA. We then detail the specific instances of the model that we use throughout the remainder of the paper. A summary of the notation used throughout the paper is provided in Table 1.

2.1 Generalized Correspondence LDA (GC-LDA)

Each document \(d\) in the corpus is comprised of two types of data: a set of word tokens \(\{w_1^{(d)}, w_2^{(d)}, \ldots, w_{N_w^{(d)}}^{(d)}\}\) consisting of unigrams and/or n-grams, and a set of peak activation tokens \(\{x_1^{(d)}, x_2^{(d)}, \ldots, x_{N_x^{(d)}}^{(d)}\}\), where \(N_w^{(d)}\) and \(N_x^{(d)}\) are the number of words and peak tokens in document \(d\), respectively. In the target application, each token \(x_i\) is a 3-dimensional vector corresponding to the peak activation coordinates of a value reported in fMRI publications. However, we note that this model can be directly applied to other types of data, such as segmented images, where each \(x_i\) corresponds to a vector of real-valued features extracted from each image segment (c.f. [2]).

GC-LDA is described by the following generative process (depicted in Figure 1(A)):

1. For each topic \(t \in \{1, \ldots, T\}\)
Table 1: Table of notation used throughout the paper

<table>
<thead>
<tr>
<th>Notation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_i, x_i)</td>
<td>The (i)th word token and peak activation token in the corpus, respectively</td>
</tr>
<tr>
<td>(N_w, N_y)</td>
<td>The number of word tokens and peak activation tokens in document (d), respectively</td>
</tr>
<tr>
<td>(D)</td>
<td>The number of documents in the corpus</td>
</tr>
<tr>
<td>(T)</td>
<td>The number of topics in the model</td>
</tr>
<tr>
<td>(R)</td>
<td>The number of components/subregions in each topic’s spatial distribution (subregions model)</td>
</tr>
<tr>
<td>(z_i)</td>
<td>Indicator variable assigning word tokens to topics</td>
</tr>
<tr>
<td>(y_i)</td>
<td>Indicator variable assigning activation tokens to topics</td>
</tr>
<tr>
<td>(z^{(d)}, y^{(d)})</td>
<td>The set of all indicator variables for word tokens and activation tokens in document (d)</td>
</tr>
<tr>
<td>(N_{td})</td>
<td>The number of activation tokens within document (d) that are assigned to topic (t)</td>
</tr>
<tr>
<td>(c_t)</td>
<td>Indicator variable assigning activation tokens to subregions (subregion models)</td>
</tr>
<tr>
<td>(\Lambda^{(t)})</td>
<td>Placeholders for all spatial parameters for topic (t)</td>
</tr>
<tr>
<td>(\mu^{(t)}, \alpha^{(t)})</td>
<td>Gaussian parameters for topic (t)</td>
</tr>
<tr>
<td>(\phi^{(t)})</td>
<td>Multinomial distribution over word types for topic (t)</td>
</tr>
<tr>
<td>(\phi_w^{(t)})</td>
<td>Probability of word type (w) given topic (t) (subregion models)</td>
</tr>
<tr>
<td>(\theta^{(d)})</td>
<td>Multinomial distribution over topics for document (d)</td>
</tr>
<tr>
<td>(\theta_t^{(d)})</td>
<td>Probability of topic (t) given document (d)</td>
</tr>
<tr>
<td>(\pi^{(t)}_r)</td>
<td>Multinomial distribution over subregions for topic (t) (subregion models)</td>
</tr>
<tr>
<td>(\pi_r^{(t)})</td>
<td>Probability of subregion (r) given topic (t) (subregion models)</td>
</tr>
<tr>
<td>(\beta, \alpha, \gamma)</td>
<td>Model hyperparameters</td>
</tr>
<tr>
<td>(\delta)</td>
<td>Model hyperparameter (subregion models)</td>
</tr>
</tbody>
</table>

(a) Sample a Multinomial distribution over word types \(\phi^{(t)} \sim \text{Dirichlet}(\beta) \)

2. For each document \(d \in \{1, ..., D\} \):
 (a) Sample a Multinomial distribution over topics \(\theta^{(d)} \sim \text{Dirichlet}(\alpha) \)
 (b) For each peak activation token \(x_i, i \in \{1, ..., N_x^{(d)}\} \):
 i. Sample indicator variable \(y_i \) from \(\text{Multinomial}(\theta^{(d)}) \)
 ii. Sample a peak activation token \(x_i \) from the spatial distribution: \(x_i \sim f(\Lambda^{(y_i)}) \)
 (c) For each word token \(w_i, i \in \{1, ..., N_w^{(d)}\} \):
 i. Sample indicator variable \(z_i \) from \(\text{Multinomial}(\frac{N_{yd}^{(d)} + \gamma}{N_{yd}^{(d)} + \gamma + \gamma T} \cdot \frac{N_{yd}^{(d)} + \gamma}{N_{yd}^{(d)} + \gamma + \gamma T} \cdot \ldots \cdot \frac{N_{yd}^{(d)} + \gamma}{N_{yd}^{(d)} + \gamma + \gamma T}) \),
 where \(N_{td} \) is the number of activation tokens \(y \) in document \(d \) that are assigned to topic \(t \),
 \(N_x^{(d)} \) is the total number of activation tokens in \(d \), and \(\gamma \) is a hyperparameter
 ii. Sample a word token \(w_i \) from \(\text{Multinomial}(\phi^{(z_i)}) \)

Intuitively, in the present application of GC-LDA, each of the topics corresponds to a functional region of the brain, where the linguistic features for the topic describe the cognitive processes associated with the spatial distribution of the topic. The resulting joint distribution of all observed peak activation tokens, word tokens, and latent parameters for each individual document in the GC-LDA model is as follows:

\[
p(x, w, z, y, \theta) = p(\theta | \alpha) \cdot \prod_{i=1}^{N_{td}^{(d)}} p(y_i | \theta^{(d)}) p(x_i | \Lambda^{(y_i)}) \cdot \prod_{j=1}^{N_{td}^{(d)}} p(z_j | y^{(d)}, \gamma) p(w_j | \phi^{(z_j)})
\]

Note that when \(\gamma = 0 \), and the spatial distribution for each topic is specified as a single multivariate Gaussian distribution, the model becomes equivalent to a smoothed version of the Correspondence LDA model described by Blei & Jordan (2003) \[2\].

\[2\] We note that \[2\] uses a different generative description for how the \(z_i \) variables are sampled conditional on the \(y_i^{(d)} \) indicator variables; in \[2\], \(z_i \) is sampled uniformly from \(\{1, ..., N_{yd}^{(d)}\} \), and then \(w_i \) is sampled from the multinomial distribution of the topic \(y_i^{(d)} \) that \(z_i \) points to. This ends up being functionally equivalent to
We refer to this model as the "no-subregions" model. A key aspect of this model is that it induces a correspondence between the number of activation tokens and the number of word tokens within a document that will be assigned the same topic. The hyperparameter γ controls the strength of this correspondence. If $\gamma = 0$, then there is zero probability that a word for document d will be sampled from topic t if no peak activations within d were sampled from t. As γ becomes larger, this constraint is relaxed, and it becomes more likely for a document to sample a word from a topic from which it sampled no peak activations. Although intuitively one might want γ to be zero in order to maximize the correspondence between the spatial and linguistic information, we have found that in practice, using a non-zero γ leads to significantly better model performance. We conjecture that using a non-zero γ allows the parameter space to be more efficiently explored during inference, since it allows peaks to be assigned to topics to which no words were assigned, and vice versa. It is also likely that a non-zero γ improves the model's ability to handle data sparsity and noise in high dimensional spaces, in the same way that the α and β hyperparameters serve this role in standard LDA [1].

2.2 Versions of GC-LDA Employed in Current Paper

There are multiple reasonable choices for the spatial distribution $p(x_i | \Lambda^{(y_i)})$ in GC-LDA, depending upon the application and the goals of the modeler. For the purposes of the current paper, we considered three variants that are motivated by the target application. The first model shown in Figure 1.B employs a single multivariate Gaussian distribution for each topic's spatial distribution – and is therefore equivalent to a smoothed version of Correspondence-LDA if setting $\gamma = 0$. The generative process for this model is the same as specified above, with generative step (b.ii) modified as follows: Sample peak activation token x_i from a Gaussian distribution with parameters $\mu^{(y_i)}$ and $\sigma^{(y_i)}$. We refer to this model as the “no-subregions” model.

The second model and third model both employ Gaussian mixtures with $R = 2$ components for each topic's spatial distribution, and are shown in Figure 1.C. Employing a Gaussian mixture gives the model more flexibility in terms of the types of spatial distributions that can be associated with a topic. This is notably useful in modeling spatial distributions associated with neural activity, as it allows the model to learn topics where a single cognitive function (captured by the linguistic distribution) is associated with spatially discontiguous patterns of activations. In the second GC-LDA model we present—which we refer to as the “unconstrained subregions” model—the Gaussian mixture components are unconstrained. In the third version of GC-LDA—which we refer to as the “constrained subregions” model—the components are constrained based on findings from the neuroimaging literature. Specifically, the Gaussian components are constrained to have symmetric means with respect to their distance from the origin along the horizontal spatial axis (a plane the generative description for x_i given here when $\gamma = 0$. Additionally, in [2], no prior is put on $\phi^{(t)}$, unlike in GC-LDA. Therefore, when using GC-LDA with a single multivariate Gaussian and $\gamma = 0$, it is equivalent to a smoothed version of Correspondence-LDA. Dirichlet priors have been demonstrated to be beneficial to model performance [1], so including a prior on $\phi^{(t)}$ in GC-LDA should have a positive impact.

![Figure 1](image-url)
corresponding to the longitudinal fissure in the brain). This constraint is consistent with results from meta-analyses of the fMRI literature, where most studied functions display a high degree of bilateral symmetry [e.g., 6, 12].

The use of mixture models for representing the spatial distribution in GC-LDA requires the additional parameters \(c, \pi, \) and hyperparameter \(\delta \), as well as additional modifications to the description of the generative process. Each topic’s spatial distribution in these models is now associated with a multinomial probability distribution \(\pi^{(t)} \) giving the probability of sampling each component \(r \) from each topic \(t \), where \(\pi^{(t)}_r \) is the probability of sampling the \(r \)th component (which we will refer to as a subregion) from the \(t \)th topic. Variable \(c_i \) is an indicator variable that assigns each activation token \(x_i \) to a subregion \(r \) of the topic to which it is assigned via \(y_i \). A full description of the generative process for these models is provided in the supplementary materials.

2.3 Inference for GC-LDA

Exact probabilistic inference for the GC-LDA model is intractable. We employed collapsed Gibbs sampling for posterior inference – collapsing out \(\theta^{(d)}, \phi^{(t)}, \) and \(\pi^{(t)} \) while sampling the indicator variables \(y_i, z_i \) and \(c_i \). Spatial distribution parameters \(\Lambda^{(t)} \) are estimated via maximum likelihood. Details of the inference methods and sampling equations are provided in the supplementary materials.

3 Experimental Evaluation

We refer to the three versions of GC-LDA described in Section 2 as (1) the “no subregions” model, for the model in which each topic’s spatial distribution is a single multivariate Gaussian distribution, (2) the “unconstrained subregions” model, for the model in which each topic’s spatial distribution is a mixture of \(R = 2 \) unconstrained Gaussian distributions, and (3) the “constrained subregions” model, for the model in which each topic’s spatial distribution is a mixture of \(R = 2 \) Gaussian distributions whose means are constrained to be symmetric along the horizontal spatial dimension with respect to their distance from the origin.

Our empirical evaluations of the GC-LDA model are based on the application of these models to the Neurosynth meta-analytic database [12]. We first illustrate and contrast the qualitative properties of topics that are extracted by the three versions of GC-LDA. We then provide a quantitative model comparison, in which the models are evaluated in terms of their ability to predict held out data. These results highlight the promise of GC-LDA and this type of modeling for jointly extracting the spatial extent and cognitive functions of neuroanatomical brain regions.

Neurosynth Database: Neurosynth [12] is a publicly available database consisting of data automatically extracted from a large collection of functional magnetic resonance imaging (fMRI) publications. For each publication, the database contains the abstract text and all reported 3-dimensional peak activation coordinates (in MNI space) in the study. The text was pre-processed to remove common stop-words. For the version of the Neurosynth database employed in the current paper, there were 11,362 total publications, which had on average 35 peak activation tokens and 46 word tokens after preprocessing (corresponding to approximately 400k activation and 520k word tokens in total).

3.1 Visualizing GC-LDA Topics

In Figure 2 we present several illustrative examples of topics for all three GC-LDA variants that we considered. For each topic, we illustrate the topic’s distribution over word types via a word cloud, where the sizes of words are proportional to their probabilities \(\phi^{(t)}_w \) in the model. Each topic’s spatial distribution over neural activations is illustrated via a kernel-smoothed representation of all activation tokens that were assigned to the topic, overlaid on an image of the brain. For the models that represent spatial distributions using Gaussian mixtures (the unconstrained and constrained subregions models), activations are color-coded based on which subregion they are assigned to, and the mixture weights for the subregions \(\pi^{(t)}_r \) are depicted above the activation image on the left. In the constrained subregions model (where the means of the two Gaussians were constrained to be symmetric along the horizontal axis) the two subregions correspond to a ‘left’ and ‘right’ hemisphere subregion. The

3 Additional details and Neurosynth data can be found at http://neurosynth.org/
Figure 2: Illustrative examples of topics extracted for the three GC-LDA variants.

following parameter settings were used for generating the images in Figure 2: $T = 200$, $\alpha = .1$, $\beta = .01$, $\gamma = .01$, and for the models with subregions, $\delta = 1.0$.

For nearly all of the topics shown in Figure 2, the spatial and linguistic distributions closely correspond to functional regions that are extensively described in the literature (e.g., motor function in primary motor cortex; face processing in the fusiform gyrus, etc.). We note that a key feature of all versions of the GC-LDA model, relative to the majority of existing methods in the literature, is that the model is able to capture the one-to-many mapping from neural regions onto cognitive functions. For example, in all model variants, we observe topics corresponding to auditory processing and language processing (e.g., the topics shown in panels B1 and B3 for the subregions model). While these cognitive processes are distinct, they have partial overlap with respect to the brain networks they recruit – specifically, the superior temporal sulcus in the left hemisphere.

For functional regions that are relatively medial, the no-subregions model is able to capture bilateral homologues by consolidating them into a single distribution (e.g., the topic shown in A3, which spans the medial primary somatomotor cortex in both hemispheres). However, for functional regions that are more laterally localized, the model cannot capture bilateral homologues using a single topic. For cognitive processes that are highly lateralized (such as language processing, shown in A1, B1
and C1) this poses no concern. However, for functional regions that are laterally distant and do have spatial symmetry, the model ends up distributing the functional region across multiple topics—see, e.g., the topics shown in A3 and A4 in the no-subregions model, which correspond to the auditory cortex in the left and right hemisphere respectively. Given that these two topics (and many other pairs of topics that are not shown) correspond to a single cognitive function, it would be preferable if they were represented using a single topic. This can potentially be achieved by increasing the flexibility of the spatial representations associated with each topic, such that the model can capture functional regions with distant lateral symmetry or other discontiguous spatial features using a single topic. This motivates the unconstrained and constrained subregions models, in which topic’s spatial distributions are represented by Gaussian mixtures.

In Figure 2 the topics in panels B3 and C3 illustrate how the subregions models are able to handle symmetric functional regions that are located on the lateral surface of the brain. The lexical distribution for each of these individual topics in the subregions models is similar to that of both the topics shown in A3 and A4 of the no-subregions model. However, the spatial distributions in B3 and C3 each capture a summation of the two topics from the no subregions model. In the case of the constrained subregion model, the symmetry between the means of the spatial distributions for the subregions is enforced, while for the unconstrained model the symmetry is data-driven and falls out of the model.

We note that while the unconstrained subregions model picks up spatial symmetry in a significant subset of topics, it does not always do so. In the case of language processing (panel A1), the lack of spatial symmetry is consistent with a large fMRI literature demonstrating that language processing is highly left-lateralized [11]. And in fact, the two subregions in this topic correspond approximately to Wernicke’s and Broca’s areas, which are integral to language comprehension and production, respectively. In other cases, (e.g., the topics in panels B2 and B4), the unconstrained subregions model partially captures spatial symmetry with a highly-weighted subregion near the horizontal midpoint, but also has an additional low-weighted region that is lateralized. While this result is not necessary wrong per se, it is somewhat inelegant from a neurobiological standpoint. Moreover, there are theoretical reasons to prefer a model in which subregions are always laterally-symmetrical. Specifically, in instances where the subregions are symmetric (the topic in panel B3 for the unconstrained subregions model and all topics for the constrained subregions model), the subregion weights provide a measure of the relative lateralization of function. For example, the language topic in panel C1 of the constrained subregions model illustrates that while there is neural activation corresponding to linguistic processing in the right hemisphere of the brain, the function is strongly left-lateralized (and vice-versa for face processing, illustrated in panel C2). By enforcing the lateral symmetry in the constrained subregions model, the subregion weights \(\pi_i(t) \) (illustrated above the left activation images) for each topic inherently correspond to an automated measure of the lateralization of the topic’s function. Thus, the constrained model produces what is, to our knowledge, the first data-driven estimation of region-level functional hemispheric asymmetry across the whole brain.

3.2 Predicting Held Out Data

This section describes quantitative comparisons between three GC-LDA models in terms of their ability to predict held-out data. We split the Neurosynth dataset into a training and test set, where approximately 20% of all data in the corpus was put into the test set. For each document, we randomly removed \(\lfloor 2N_{p}^{(d)} \rfloor \) peak activation tokens and \(\lfloor 2N_{w}^{(d)} \rfloor \) word tokens from each document. We trained the models on the remaining data, and then for each model we computed the log-likelihood of the test data, both for the word tokens and peak tokens.

The space of possible hyperparameters to explore in GC-LDA is vast, so we restrict our comparison to the aspects of the model which are novel relative to the original Correspondence-LDA model. Specifically, for all three model variants, we compared the log-likelihood of the test data across different values of \(\gamma \), where \(\gamma \in \{0, 0.001, 0.01, 0.1, 1\} \). We note again here that the no-subregions model with \(\gamma = 0 \) is equivalent to a smoothed version of Correspondence-LDA [2] (see footnote [3] for additional clarification). The remainder of the parameters were fixed as follows (chosen based on a combination of precedent from the topic modeling literature and preliminary model exploration): \(T = 100, \alpha = .1, \) and \(\beta = .01 \) for all models, and \(\delta = 1.0 \) for the models with subregions. All models were trained for 1000 iterations.
Figure 3 presents the held out log-likelihoods for all models across different settings of γ, in terms of (i) the total log-likelihood for both activation tokens and word tokens (left) (ii) log-likelihood for activation tokens only (middle), and (iii) log likelihood for word tokens only (right). For both activation tokens and word tokens, for all three versions of GC-LDA, using a non-zero γ leads to significant improvement in performance. In terms of predicting activation tokens alone, there is a monotonic relationship between the size of γ and log-likelihood. This is unsurprising, since increasing γ reduces the extent that word tokens constrain the spatial fit of the model. In terms of predicting word tokens (and overall log-likelihood), the effect of γ shows an inverted-U function, with the best performance in the range of .01 to .1. These patterns were consistent across all three variants of GC-LDA. Taken together, our results suggest that using a non-zero γ results in a significant improvement over the Correspondence-LDA model.

In terms of comparisons across model variants, we found that both subregions models were significant improvements over the no-subregions models in terms of total log-likelihood, although the no-subregions model performed slightly better than the constrained subregions model at predicting word tokens. In terms of the two subregions models, performance is overall fairly similar. Generally, the constrained subregions model performs slightly better than the unconstrained model in terms of predicting peak tokens, but slightly worse in terms of predicting word tokens. The differences between the two subregions models in terms of total log-likelihood were negligible. These results do not provide a strong statistical case for choosing one subregions model over the other; instead, they suggest that the modeler ought to choose between models based on their respective theoretical or qualitative properties (e.g., biological plausibility, as discussed in Section 3.1).

4 Summary

We have presented generalized correspondence LDA (GC-LDA) – a generalization of the Correspondence-LDA model, with a focus on three variants that capture spatial properties motivated by neuroimaging applications. We illustrated how this model can be applied to a novel type of metadata—namely, the spatial peak activation coordinates reported in fMRI publications—and how it can be used to generate a relatively comprehensive atlas of functional brain regions. Our quantitative comparisons demonstrate that the GC-LDA model outperforms the original Correspondence-LDA model at predicting both missing word tokens and missing activation peak tokens. This improvement was demonstrated in terms of both the introduction of the γ parameter, and with respect to alternative parameterizations of topics’ spatial distributions.

Beyond these quantitative results, our qualitative analysis demonstrates that the model can recover interpretable topics corresponding closely to known functional regions of the brain. We also showed that one variant of the model can recover known features regarding the hemispheric lateralization of certain cognitive functions. These models show promise for the field of cognitive neuroscience, both for summarizing existing results and for generating novel hypotheses. We also expect that novel features GC-LDA can be carried over to other extensions of Correspondence-LDA in the literature.

In future work, we plan to explore other spatial variants of these models that may better capture the morphological features of distinct brain regions – e.g., using hierarchical priors that can capture the hierarchical organization of brain systems. We also hope to improve the model by incorporating...
features such as the correlation between topics. Applications and extensions of our approach for more standard image processing applications may also be a fruitful area of research.

References

Supplement: Generalized Correspondence-LDA Models (GC-LDA) for Identifying Functional Regions in the Brain

The notation used for both model specification and inference throughout the supplement is summarized in Table 1.

1 Generative Process and Joint Distribution for GC-LDA with Gaussian Mixtures

For completeness, we present here a modified version of the generative process for the GC-LDA model where the spatial distributions are modeled as mixtures of multivariate Gaussians with \(R \) components. We only present the updated process for generating topics \(t \) and activation tokens \(x_i \), as the generative process for sampling word tokens \(w_i \) does not depend on the parameterization of the spatial distributions:

1. For each topic \(t \in \{1, \ldots, T\} \):
 (a) Sample a Multinomial distribution over word types \(\phi^{(t)} \sim \text{Dirichlet}(\beta) \)
 (b) Sample a Multinomial distribution over subregions \(\pi^{(t)} \sim \text{Dirichlet}(\delta) \)

2. For each document \(d \in \{1, \ldots, D\} \):
 (a) For each peak activation token \(x_i \in \{1, \ldots, N_x^{(d)}\} \):
 i. Sample indicator variable \(y_i \) from \(\text{Multinomial}(\theta^{(d)}) \)
 ii. Sample indicator variable \(c_i \) from \(\text{Multinomial}(\pi^{(y_i)}) \)
 iii. Sample a peak activation token \(x_i \) from the spatial distribution for subregion \(r^{(y_i)}_{c_i} \)
 \(x_i \sim \text{Gaussian}(\mu^{(y_i)}_{c_i}, \sigma^{(y_i)}_{c_i}) \)

The joint distribution of all observed peak activation tokens, word tokens, and latent parameters for each individual document in the GC-LDA model with a mixture of Gaussian spatial distributions is as follows:

\[
p(x, w, z, y, c, \theta) = p(\theta|\alpha) \cdot \left(\prod_{i=1}^{N_x^{(d)}} p(y_i|\theta^{(d)}) p(c_i|\pi^{(y_i)}) p(x_i|\mu^{(y_i)}_{c_i}, \sigma^{(y_i)}_{c_i}) \right) \cdot \left(\prod_{j=1}^{N_z^{(d)}} p(z_j|y^{(d)}, \gamma) p(w_j|\phi^{(z_j)}) \right)
\]

2 Inference for GC-LDA

During inference, we seek to estimate the posterior distribution across all unobserved model parameters. As is typical with topic models, exact probabilistic inference for the GC-LDA model is intractable. Inference for the original Correspondence LDA model \([2]\) used Variational Bayesian methods. Here, we employ a mixture of MCMC techniques based on Gibbs Sampling \([3]\), since Gibbs sampling approaches have often outperformed variational methods for inference in LDA \([1][4]\).

In describing the inference procedure, we will provide update equations for the three variants of GC-LDA that were used in our experiments, depicted in Figures 1.B and 1.C. Specifically, we describe the updates for the GC-LDA model where each topic’s spatial component is represented by a single Gaussian distribution (Figure 1.B), and for the two GC-LDA models where each topic’s spatial distribution is represented by a mixture of Gaussian distributions (Figure 1.C). As a reminder, the difference between the two versions of the model that use Gaussian mixtures (referred to as the “unconstrained subregions” and “constrained subregions” models), is that we constrain the mean of the two Gaussian components to be symmetric with respect to their distance from the origin along the horizontal spatial axis in the “constrained subregions” model. In places where the updates for the versions of the models are different, we will first describe the update for the model with single a Gaussian distribution, and then describe how it is modified for the models that use Gaussian mixtures.

After model initialization, our Gibbs Sampling method involves sequentially updating the spatial distribution parameters \(\Lambda^{(t)}\) for all topics, the assignments \(z_i\) of word tokens to topics, and the assignments \(y_i\) of peak activation tokens to topics (and additionally the assignments \(c_i\) of activation tokens to subregions when using a Gaussian mixture model for each topic’s spatial distribution). We first provide an overview of the sampling algorithm sequence, and then describe in detail the update equations used at each step. We also note here that the update equations presented here will generalize to any variant of the GC-LDA model using a single parametric or mixture of parametric spatial distributions, provided the updates for the spatial parameter estimates are modified appropriately.

2.1 Overview of Inference Procedure

Configuring and running the model consists of two phases: (1) Model initialization, and (2) Inference. We first describe model initialization, and give an overview of the sequence in which model parameters are updated. We will then provide the exact update equations for each of the steps used during inference.

2.1.1 Model Initialization

To initialize the model, we first randomly assign all \(y_i\) indicator variables to one of the topics \(y_i \sim \text{uniform}(1, ..., T)\). The \(z_i\) indicator variables are randomly sampled from the multinomial distribution conditioned on \(y_i^{(d)}\) as defined in the generative model: \(z_i \sim \text{Multinomial}\left(\frac{N_{Y D 1}}{N_{D}}, \frac{N_{Y D 2}}{N_{D}}, ..., \frac{N_{Y D R}}{N_{D}}\right)\). In the model that uses an unconstrained mixture of Gaussians with \(R = 2\), the initial \(c_i\) are randomly assigned: \(c_i \sim \text{uniform}(1, ..., R)\). In “constrained subregions” model we used a deterministic initial assignment, where we set \(c_i = 1\) if the x-coordinate of the activation token was less than or equal to zero (i.e., if the activation peak fell within the left hemisphere of the brain), and \(c = 2\) otherwise.
after initialization, the model inference procedure entails repeating the following three parameter update steps until the algorithm has converged:

1. For each topic \(t \), update the estimate of the spatial distribution parameters \(\Lambda^{(t)} \) conditioned on the subset of peaks \(x_i \) with indicator variables \(y_i = t \). When using a model with subregions for the topics’ spatial components, update the estimate of the spatial distribution parameters \(\Lambda^{(r)} \) conditioned on the subsets of peaks \(x_i \) with indicator variables \(y_i = t \) and \(c_i = r \).

2. For each activation token \(x_i \) in each document \(d \), update the corresponding indicator variable \(y_i \) assigning the token to a topic, conditioned on the current estimates of all spatial distribution parameters \(\Lambda^{(t)} \), the current assignments of \(\mathbf{z}^{(d)} \) of all word tokens to topics in document \(d \), and the current estimate of the document’s multinomial distribution over topics \(\theta^{(d)} \). When using a model with subregions, instead jointly update the indicator variables \(y_i \) of the token to a topic and \(c_i \) of the token to a subregion within topic \(y_i \). This update is additionally conditioned on the current estimate of all topic’s multinomial distributions over subregions \(\pi^{(t)} \).

3. For each word token \(w_i \) in each document \(d \), update the corresponding indicator variable \(z_i \) assigning the token to a topic, conditioned on the current estimates of all topics’ multinomial
distributions over words \(\phi(i) \), and the current assignments \(y^{(d)} \) of all peaks to topics in document \(d \).

Note that we do not need to directly update the \(\theta^{(d)} \), \(\phi(i) \) or \(\pi^{(t)} \) parameters during inference, because these distributions are “collapsed out” \[4\] and are estimated directly from the current state of indicator variables \(y, z, \) and \(c \), respectively. Convergence of this algorithm is evaluated by computing the log-likelihood of the observed data after every iteration of the sampler; when the log-likelihood is no increasing over multiple iterations, we halt the algorithm and compute a final estimate of all parameters.

We now provide the update equations for each of these steps.

2.2 Updating Spatial Distribution Estimates: \(\Lambda^{(t)} \)

To estimate the spatial distributions, we compute the maximum likelihood estimates of the spatial distribution for each topic \(t \), conditioned on the subset of peak activation tokens that are assigned to \(t \):

\[
\hat{\mu}^{(t)} = \frac{\sum_{i: y_i = t} x_i}{N^{YT}_t} \\
\hat{\sigma}^{(t)} = \frac{\sum_{i: y_i = t} (x_i - \hat{\mu}^{(t)})^2}{N^{YT}_t}
\]

where \(N^{YT}_t \) is the total number of peak activation tokens \(x_i \) that are assigned (via \(y_i \)) to \(t \). When using a mixture of Gaussians for the spatial distributions, the same estimates are used to estimate the means and covariances for each subregion, \(\hat{\mu}^{(t)} \) and \(\hat{\sigma}^{(t)} \), except that the sums are computed over the subset of peak activation tokens for which \(y_i = t \) and \(c_i = r \).

In the “constrained subregions” model, where the Gaussian component means are constrained to be symmetric about the horizontal spatial axis (with respect to the distance from the origin), we must further modify the estimation procedure. We estimate a single mean for the two subregions, with respect to it’s location along the horizontal axis in terms of distance from the origin (corresponding to the longitudinal fissure of the brain), by computing the average coordinates of all \(x_i \) tokens that are assigned to \(t \) after taking the absolute value of the tokens’ distance from the origin. This estimate is then used as the mean of the 2nd subregion along the horizontal axis, and the mean of the 1st subregion is set equal to the same mean, reflected about the horizontal axis (so the that along this coordinate, \(\hat{\mu}_1^{(t)} = -\hat{\mu}_2^{(t)} \)). The covariance matrices of the two subregions are estimated independently using equation 5.

2.3 Updating Assignments \(y_i \) of Activation Tokens \(x_i \) to Topics

The update step, in which peak activation tokens \(x_i \) to are assigned to topics via the indicator variables \(y_i \), is dependent upon the choice of the spatial distribution. Specifically, when using a model with topic subregions, this step involves additionally updating the \(c_i \) assignments of tokens to subregions. We first provide the update equations for the model that uses a single spatial distribution, and then describe the modification to this update needed when using a subregion model.

2.3.1 Updating \(y_i \) Assignments for GC-LDA models with a Single Multivariate Gaussian Spatial Distributions

Here, we wish to update the indicator variable \(y_{d}^{(i)} \), which is the assignment of the \(i \)th peak of document \(d \) to a topic. This update is conditioned on the current estimates of all spatial distribution parameters \(\Lambda \), the current vector \(z^{(d)} \) of assignments of words to topics in document \(d \), and the current estimate of the document’s multinomial distribution over topics \(\theta^{(d)} \).

We employ a Gibbs Sampling step to update each indicator variable, using a proposal distribution. The proposal distribution is used to compute the relative probabilities that \(y_{d}^{(i)} \) should be assigned to a specific topic \(t = 1, \ldots, T \). Once the relative probabilities are computed across all topics, we randomly sample a topic-assignment from this proposal distribution, normalized such that the probability of assigning the word to a topic sums to 1 across all topics. The update equation is as follows:
\[
p(y_i = t | x_i, z_i^{(d)}, y_i^{(d)}, \Lambda^{(t)}, \gamma, \alpha) \sim p(x_i | \Lambda^{(t)}) \cdot p(t | \theta^{(d)}) \cdot p(z_i^{(d)} | y_i^{(d)}, \gamma)
\]

\[
\sim p(x_i | \Lambda^{(t)}) \cdot (NY^D_{td-i} + \alpha) \cdot \prod_{j=1}^{N^d} \frac{NY^D_{zd} + \gamma}{NY^d_{zd} + \gamma + T}
\]

To understand this equation and the notation, let’s consider the three main terms in the equation in detail.

The first term, \(p(x_i | \Lambda^{(t)}) \), is simply the probability that peak activation \(x_i^{(d)} \) was generated from the spatial distribution associated with topic \(t \). For example, if each topic is associated with a single multivariate Gaussian distribution, this term corresponds to the multivariate Gaussian probability density function evaluated at location \(x_i \).

The second term, \((NY^D_{td-i} + \alpha) \) is an estimate of the probability of sampling topic \(t \) from \(\theta^{(d)} \), using an estimate of \(\theta^{(d)} \) that is computed from the set of all indicator variables \(y_i^{(d)} \) in document \(d \) excluding the indicator variable for the token \(i \) that is currently being sampled. In the notation above, \(NY^D_{td-i} \) is equal to the number of peaks in document \(d \) that are currently assigned (via the indicator variables \(y \)) to topic \(t \), where \(-i \) indicates that the current token that we are sampling is removed from these counts. Note that although the actual estimate of \(\theta^{(d)} \) requires a normalization term, this is not necessary during Gibbs sampling because the proposal distribution only needs to be proportional to the true probabilities.

The third term, \(\prod_{j=1}^{N^d} \frac{NY^D_{zd} + \gamma}{NY^d_{zd} + \gamma + T} \) is the probability of sampling all of the current indicator variables \(z_i^{(d)} \) for words in the document, given the count matrix \(NY^D_{zd} \) that results from the proposed update of the indicator variables for the peak assignment \(y_i \). More precisely, this is computing the multinomial likelihood of generating the current vector of word-topic assignments \(z_i^{(d)} \) for \(d \) from the set of peak-topic assignments \(y_i^{(d)} \) that would result from the proposed update of \(y_i \). In this notation, \(NY^D_{zd} + \gamma \) is the multinomial probability of sampling the indicator variable \(z_j \) from the proposed vector of peak-topic assignments \(y_i^{(d)} \), where \(NY^D_{zd} \) is the number of \(y \) indicator variables that would be assigned to the same topic as indicator variable \(z_j \) given the proposed update of \(y_i \) and the hyperparameter \(\gamma \) (note that this probability is defined in step (b)ii of the generative process). By iterating this product over all indicator variables \(z_j \in d \), we compute the relative probability of sampling \(z_i^{(d)} \) from the multinomial distribution defined in the generative model.

2.3.2 Updating \(y_i \) and \(c_t \) Assignments for GC-LDA models with a Mixtures of Multivariate Gaussian Spatial Distributions

In the GC-LDA model in which each topic’s spatial distribution is a mixture of multivariate Gaussian distributions, we use a modified Gibbs sampling procedure in which we jointly sample both the \(y_i \) assignment of the peak activation token to a topic, and the \(c_t \) assignment of the peak activation token to a subregion, according to the following update equation:

\[
p(y_i = t, c_i = r | x_i, z_i^{(d)}, y_i^{(d)}, \Lambda^{(t)}, \tau^{(t)}, \delta, \gamma, \alpha)
\]

\[
\sim p(x_i | \Lambda^{(t)}) \cdot p(t | \theta^{(d)}) \cdot p(r | \pi^{(y_i)}, \delta) \cdot p(z_i^{(d)} | y_i^{(d)}, \gamma)
\]

\[
\sim p(x_i | \Lambda^{(t)}) \cdot (NY^D_{td-i} + \alpha) \cdot \sum_{r=1}^{R^T} \frac{NY^D_{r} + \delta}{NY^D_{r} + \gamma + T} \prod_{j=1}^{N^d} \frac{NY^D_{zd} + \gamma}{NY^d_{zd} + \gamma + T}
\]

This update equation is the same as the update equation for the model with a single multivariate Gaussian distribution per topic, with the exception of the third term, which is estimating the probability of sampling the subregion \(r \) from topic \(t \). The notation \(NY^D_{r} \) corresponds to the total number of subregion indicator variables \(c_t \) that are currently assigned to subregion \(r \) within topic \(t \), excluding the count of the token that is currently being sampled. As with \(\theta^{(d)} \) and \(\phi^{(t)} \), the \(\pi^{(t)} \) parameters
don’t need to be explicitly updated. Instead, these are collapsed out, and estimated via the sums of counts of the c_i indicator variables.

2.4 Updating z_i Assignments of Word Tokens w_i to topics

Here we wish to update the indicator variables $z_i^{(d)}$, giving the assignment of the ith word token w_i in document d to a topic. This update is conditioned on the current vector $y^{(d)}$ of assignments of peaks to topics in d, and an estimate of each topic’s multinomial distribution over word types $\phi^{(t)}$.

This update involves a collapsed Gibbs sampling step similar in form to the one employed for inference in standard LDA [4]. The update equation is as follows:

$$p(z_i = t|w_i, z_{-i}, y^{(d)}, \gamma, \beta) \sim p(t|y^{(d)}, \gamma) \cdot p(w_i|\phi^{(t)}).$$

$$\sim \frac{\sum_{w'=1}^{T} N^{ZT}_{w't_i + \beta}}{N^{YD}_{td}, \gamma + \alpha} \cdot \frac{N^{ZT}_{wt, _i + \beta}}{N^{YD}_{td, _i + \gamma}}$$

The first term in this equation gives the probability of sampling topic t from document d, which is proportional to $N^{YD}_{td, _i} + \alpha$—the count of the number of activation tokens in document d that are currently assigned to topic t—plus the smoothing parameter γ, as defined in the generative model. The second term in this equation is the probability of sampling word w_i from topic t, given the current estimates of the topic-word multinomial distributions. As with the estimate of $\theta^{(d)}$ computed during the y_i update steps, $\phi^{(t)}$ is computed from the counts of word token assignments, where $N^{ZT}_{wt, _i}$ is the number of times word type w is assigned to topic t across the vector of indicator variables z_{-i}, ignoring the token that is currently being sampled.

2.5 Computing Final Parameter Estimates

We compute final estimates (as well as estimates to be used for log-likelihood computations during inference) of the model parameters as follows:

$$\hat{\theta}^{(d)}_{t} = \frac{N^{YD}_{td} + \alpha}{\sum_{t'=1}^{T} (N^{YD}_{t'd} + \alpha)}$$

$$\hat{\pi}^{(t)}_r = \frac{N^{CT}_{rt} + \delta}{\sum_{r'=1}^{R} (N^{CT}_{r't} + \delta)}$$

$$\hat{\phi}^{(t)}_{w} = \frac{N^{ZT}_{wt} + \beta}{\sum_{t'=1}^{T} (N^{ZT}_{wt'} + \beta)}$$

The final estimates for the parameters of the spatial distributions are equivalent to estimates used during inference, described previously.

References

